Simulating Organogenesis in COMSOL: Tissue Mechanics
نویسندگان
چکیده
During growth, tissue expands and deforms. Given its elastic properties, stresses emerge in an expanding and deforming tissue. Cell rearrangements can dissipate these stresses and numerous experiments confirm the viscoelastic properties of tissues [1]–[4]. On long time scales, as characteristic for many developmental processes, tissue is therefore typically represented as a liquid, viscous material and is then described by the Stokes equation [5]–[7]. On short time scales, however, tissues have mainly elastic properties. In discrete cell-based tissue models, the elastic tissue properties are realized by springs between cell vertices [8], [9]. In this article, we adopt a macroscale perspective of tissue and consider it as homogeneous material. Therefore, we may use the “Structural Mechanics” module in COMSOL Multiphysics in order to model the viscoelastic behavior of tissue. Concretely, we consider two examples: first, we aim at numerically reproducing published [10] analytical results for the sea urchin blastula. Afterwards, we numerically solve a continuum mechanics model for the compression and relaxation experiments presented in [4].
منابع مشابه
Simulation Organogenesis in COMSOL: Deforming and Interacting Domains
Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. In our previous paper on simulating organogenesis in COMSOL (German et al COMSOL Conf Procedings 2011) we discu...
متن کاملSimulating Organogenesis in COMSOL: Cell-based Signaling Models
Most models of biological pattern formation are simulated on continuous domains even though cells are discrete objects that provide internal boundaries to the diffusion of regulatory components. In our previous papers on simulating organogenesis in COMSOL (Germann et al COMSOL Conf Procedings 2011; Menshykau and Iber, COMSOL Conf Proceedings 2012) we discussed methods to efficiently solve signa...
متن کاملSimulating Organogenesis in COMSOL
Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatiotemporal diffe...
متن کاملSimulating Organogenesis in COMSOL: Parameter Optimization for PDE-based models
Morphogenesis is a tightly regulated process that has been studied for decades. We are developing data-based and image-basd mechanistic models for a range of developmental processes with a view to integrate the available knowledge and to better understand the underlying regulatory logic. In our previous papers on simulating organogenesis with COMSOL (German et al COMSOL Conf Procedings 2011; Me...
متن کاملSimulating Organogenesis in COMSOL Multiphysics®: Image-Based Modeling
Organogenesis is a highly dynamic process that is tightly regulated during embryogenesis. Many of the individual regulatory components, such as signaling molecules and their receptors, as well as their regulatory interactions have been identified in experiments. However, an integrative mechanistic understanding of the regulatory network is missing [1]. In a series of papers on simulating organo...
متن کامل